PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 9, September 2008, Pages 3045–3050 S 0002-9939(08)09471-9 Article electronically published on April 17, 2008

A SHEAF OF HOCHSCHILD COMPLEXES ON QUASI-COMPACT OPENS

WENDY LOWEN

(Communicated by Ted Chinburg)

ABSTRACT. For a scheme X, we construct a sheaf C of complexes on X such that for every quasi-compact open $U \subset X$, $\mathbf{C}(U)$ is quasi-isomorphic to the Hochschild complex of U (Lowen and Van den Bergh, 2005). Since C is moreover acyclic for taking sections on quasi-compact opens, we obtain a local to global spectral sequence for Hochschild cohomology if X is quasi-compact.

1. INTRODUCTION

Let X be a scheme over a field k. In [11], the Hochschild complex $\mathbf{C}(X, \mathcal{O}_X)$ of X is defined to be the Hochschild complex of the abelian category $\mathsf{Mod}(X)$ of sheaves on X. Its cohomology theory coincides with various notions of Hochschild cohomology of X considered in the literature, for example by Swan [14] and Kontsevich [8], which in the commutative case agree with the earlier theory of Gerstenhaber-Schack [2].

For a basis \mathfrak{b} of affine opens of X, there is an associated k-linear category (also denoted by \mathfrak{b}) and there is a quasi-isomorphism

$$\mathbf{C}(X, \mathcal{O}_X) \cong \mathbf{C}(\mathfrak{b})$$

where $\mathbf{C}(\mathfrak{b})$ is the Hochschild complex of the k-linear category \mathfrak{b} (§2.1). The Hochschild complexes have a considerable amount of extra structure containing in particular the cup-product and the Gerstenhaber bracket. This extra structure is important for deformation theory. It is captured by saying that the complexes are B_{∞} -algebras [3, 6], and \cong as above means the existence of an isomorphism in the homotopy category of B_{∞} -algebras. Let $\mathcal{O}_{\mathfrak{b}}$ be the restriction of \mathcal{O}_X to the basis \mathfrak{b} . Then \cong above is reflected in the fact that there is an equivalence between the deformation theory of $\mathsf{Mod}(X)$ as an abelian category [12] and the deformation theory of $\mathcal{O}_{\mathfrak{b}}$ as a twisted presheaf [9].

If we consider the restrictions $\mathfrak{b}|_U$ of \mathfrak{b} to open subsets $U \subset X$, we obtain a presheaf of Hochschild complexes on X:

$$\mathbf{C}_{\mathfrak{b}}: U \longmapsto \mathbf{C}(\mathfrak{b}|_U).$$

©2008 American Mathematical Society Reverts to public domain 28 years from publication

Received by the editors September 18, 2006, and, in revised form, June 25, 2007, and July 10, 2007.

²⁰⁰⁰ Mathematics Subject Classification. Primary 18E15, 18F20.

The author is a Postdoctoral fellow FWO/CNRS. She acknowledges the hospitality of the Institut de Mathématiques de Jussieu (IMJ) and of the Institut des Hautes Études Scientifiques (IHES) during her postdoctoral fellowship with CNRS.

WENDY LOWEN

To relate the "global" Hochschild complex $\mathbf{C}(\mathfrak{b})$ to the "local" Hochschild complexes $\mathbf{C}(\mathfrak{b}|_U)$ of certain open subsets $U \subset X$, it would be desirable for $\mathbf{C}_{\mathfrak{b}}$ to be a sheaf, which is preferably acyclic for taking global sections. Unfortunately, $\mathbf{C}_{\mathfrak{b}}$ is not even a separated presheaf with regard to finite coverings. In this paper, we construct a *sheaf* \mathbf{C} of B_{∞} -algebras such that

- (1) $\mathbf{C}(U, \mathcal{O}_U) \cong \mathbf{C}(U)$ for U quasi-compact open.
- (2) **C** is acyclic for taking quasi-compact sections, i.e. $R\Gamma(U, \mathbf{C}) = \mathbf{C}(U)$ for U quasi-compact open.

For U quasi-compact open, $\mathbf{C}(U)$ is obtained as a colimit of complexes $\mathbf{C}_{\mathfrak{b}}(U)$ over a collection $\mathcal{B}(U)$ of bases of U (§2.3). The properties of **C** depend upon the choice of a good presheaf \mathcal{B} of bases (Definition 2.1).

From properties (1) and (2), we readily deduce the existence of a local to global spectral sequence

$$E_2^{p,q} = H^p(X, \mathbf{H}^q \mathbf{C}) \Rightarrow H^{p+q} \mathbf{C}(X)$$

for Hochschild cohomology for a quasi-compact scheme X (Theorem 4.1).

We should remark that for a smooth separated scheme, another sheaf of B_{∞} algebras \mathbf{D}_{poly} is considered, for example, by Kontsevich [7], Van den Bergh [15], and Yekutieli [16]. Let $\mathbf{C}(\mathcal{O}(U))$ be the Hochschild complex of the ring $\mathcal{O}(U)$, and let $\mathbf{C}_{\text{poly}}(\mathcal{O}(U))$ be the subcomplex which consists of the polydifferential operators, i.e. multilinear maps $\mathcal{O}(U)^{\otimes p} \longrightarrow \mathcal{O}(U)$ which are differential operators in each argument. Then for U affine open, \mathbf{D}_{poly} satisfies

$$\mathbf{D}_{\text{poly}}(U) \cong \mathbf{C}_{\text{poly}}(\mathcal{O}(U)).$$

The complex $R\Gamma(X, \mathbf{D}_{poly})$ computes the Hochschild cohomology of X, but a priori does not inherit the structure of a B_{∞} -algebra. One way to overcome this problem is by using a fibrant resolution $\mathbf{D}_{poly} \longrightarrow \mathbf{F}_{poly}$ in the model category of presheaves of B_{∞} -algebras as defined by Hinich [5]. Alternatively, in [15, Appendix B], Van den Bergh constructs a quasi-isomorphic object $R\Gamma(X, \mathbf{D}_{poly})^{\text{tot}}$ that does inherit this structure (the construction, which uses pro-hypercoverings, is functorial and inherits any operad-algebra structure). Moreover, $R\Gamma(X, \mathbf{D}_{poly})^{\text{tot}}$ is isomorphic to $\mathbf{C}(X, \mathcal{O}_X)$ in the homotopy category of B_{∞} -algebras [15, Theorem 3.1, Appendices A, B] and by [15, Appendix B.10], we actually have $R\Gamma(X, \mathbf{D}_{poly})^{\text{tot}} \cong$ $\Gamma(X, \mathbf{F}_{poly})$ in the same sense.

Finally, as to the existence of a local to global spectral sequence for Hochschild cohomology for a general ringed space (X, \mathcal{O}_X) , a proof using hypercoverings is in preparation [10].

2. Presheaves of Hochschild complexes

2.1. The Hochschild complex of a scheme. Throughout, k is a field. Let (X, \mathcal{O}_X) be a scheme over k and let \mathfrak{b} be a basis of affine opens. We use the same notation for the associated k-linear category with \mathfrak{b} as objects and

$$\mathfrak{b}(V,U) = \begin{cases} \mathcal{O}_X(V) & \text{if } V \subset U, \\ 0 & \text{else.} \end{cases}$$

In [11, §7.1], the Hochschild complex $\mathbf{C}(X, \mathcal{O}_X)$ of X is defined, and in [11, Theorem 7.3.1], there is shown to be a quasi-isomorphism

$$\mathbf{C}(X, \mathcal{O}_X) \cong \mathbf{C}(\mathfrak{b})$$

where $\mathbf{C}(\mathfrak{b})$ is the Hochschild complex of the k-linear category \mathfrak{b} [13], i.e.

$$\mathbf{C}^{p}(\mathfrak{b}) = \prod_{U_{0},\ldots,U_{p}\in\mathfrak{b}} \operatorname{Hom}_{k}(\mathfrak{b}(U_{p-1},U_{p})\otimes_{k}\cdots\otimes_{k}\mathfrak{b}(U_{0},U_{1}),\mathfrak{b}(U_{0},U_{p}))$$

and the differential is the usual Hochschild differential. More concretely, we have

$$\mathbf{C}^{p}(\mathfrak{b}) = \prod_{U_{0} \subset U_{1} \subset \cdots \subset U_{p} \in \mathfrak{b}} \operatorname{Hom}_{k}(\mathcal{O}_{X}(U_{p-1}) \otimes_{k} \cdots \otimes_{k} \mathcal{O}_{X}(U_{0}), \mathcal{O}_{X}(U_{0})),$$
$$\mathbf{C}^{0}(\mathfrak{b}) = \prod_{U_{0} \in \mathfrak{b}} \mathcal{O}_{X}(U_{0}).$$

Hence this complex combines the nerve of the poset \mathfrak{b} with the algebraic structure of \mathcal{O}_X . In fact, both complexes are B_{∞} -algebras [3, 6], and \cong means the existence of an isomorphism in the homotopy category of B_{∞} -algebras.

2.2. The presheaf $C_{\mathcal{B}}$ of Hochschild complexes. For an arbitrary open subset $U \subset X$, put $\mathfrak{b}|_U = \{B \in \mathfrak{b} \mid B \subset U\}$. Then $\mathfrak{b}|_U$ is a basis of affine opens for the scheme (U, \mathcal{O}_U) ; hence we have a quasi-isomorphism

$$\mathbf{C}(U, \mathcal{O}_U) \cong \mathbf{C}(\mathfrak{b}|_U).$$

For $V \subset U$ there is an obvious restriction map

$$\mathbf{C}(\mathfrak{b}|_U) \longrightarrow \mathbf{C}(\mathfrak{b}|_V).$$

We thus obtain a presheaf

$$\mathbf{C}_{\mathfrak{b}}: U \longmapsto \mathbf{C}_{\mathfrak{b}}(U) = \mathbf{C}(\mathfrak{b}|_U)$$

of Hochschild complexes on X. It is readily seen that in general, $\mathbf{C}_{\mathfrak{b}}$ fails to be a sheaf. Indeed, suppose we have $W \in \mathfrak{b}$ and $W = U \cup V$ with U and V proper open subsets. Then there is a non-zero element $\varphi = (\varphi_{U_0})_{U_0} \in \mathbf{C}^0_{\mathfrak{b}}(W)$ with

$$\varphi_{U_0} = \begin{cases} 1 \in \mathcal{O}_X(U_0) & \text{if } U_0 = W, \\ 0 & \text{else,} \end{cases}$$

whose restriction to U and V is zero. In this example, the fact that $W = U \cup V$ makes the presence of W in \mathfrak{b} redundant. This suggests that to obtain a sheaf, we must work with variable bases, as will be done in the next section.

2.3. The presheaf $C_{\mathcal{B}}$ of colimit Hochschild complexes. In this section instead of considering $C_{\mathfrak{b}}(U)$ for a fixed basis \mathfrak{b} of X, we will consider a colimit of complexes $C(\mathfrak{b})$ over different bases \mathfrak{b} of U. More precisely, we are looking for collections $\mathcal{B}(U)$ of bases of affine opens of U, which allow us to define "colimit Hochschild complexes"

$$\mathbf{C}_{\mathcal{B}}(U) = \operatorname{colim}_{\mathfrak{b} \in \mathcal{B}(U)} \mathbf{C}(\mathfrak{b}).$$

Here $\mathcal{B}(U)$ is ordered by \supset and $\mathfrak{b} \supset \mathfrak{b}'$ corresponds to the canonical $\mathbf{C}(\mathfrak{b}) \longrightarrow \mathbf{C}(\mathfrak{b}')$. Since we do not want the colimit to change the cohomology, we want it to be a filtered colimit. In particular, this is the case if $\mathcal{B}(U)$ is closed under intersections, i.e. if we have the operation

(1)
$$\mathcal{B}(U) \times \mathcal{B}(U) \longrightarrow \mathcal{B}(U) : (\mathfrak{b}, \mathfrak{b}') \longmapsto \mathfrak{b} \cap \mathfrak{b}'.$$

Note that in general, $\mathfrak{b} \cap \mathfrak{b}'$ need not even be a basis. If $\mathcal{B}(U) \neq \emptyset$ and we have (1), then there are quasi-isomorphisms

$$\mathbf{C}(U, \mathcal{O}_U) \cong \mathbf{C}_{\mathcal{B}}(U).$$

WENDY LOWEN

For $\mathbf{C}_{\mathcal{B}}: U \longmapsto \mathbf{C}_{\mathcal{B}}(U)$ to become a presheaf, we need restriction operations

(2)
$$\mathcal{B}(U) \longrightarrow \mathcal{B}(V) : \mathfrak{b} \longmapsto \mathfrak{b}|_{V} = \{B \in \mathfrak{b} \mid B \subset V\}$$

for $V \subset U$, making \mathcal{B} itself into a presheaf of collections of bases. In this way, $\mathbf{C}_{\mathcal{B}}$ clearly becomes a presheaf of B_{∞} -algebras on X.

In order to prove Proposition 3.1 in the next section, we need two more operations on \mathcal{B} . First, we want to take the union of bases coinciding on the intersection of their domains; i.e. we want the operation

(3)
$$\mathcal{B}(U) \times_{\mathcal{B}(U \cap V)} \mathcal{B}(V) \longrightarrow \mathcal{B}(U \cup V) : (\mathfrak{b}, \mathfrak{b}') \longmapsto \mathfrak{b} \cup \mathfrak{b}'.$$

Second, we want to refine bases by plugging in finer bases; i.e. for $V \subset U$ we want the operation

$$\mathcal{B}(U) \times \mathcal{B}(V) \longrightarrow \mathcal{B}(U) : (\mathfrak{b}_U, \mathfrak{b}_V) \longmapsto \mathfrak{b}_U \circ \mathfrak{b}_V = \{ B \in \mathfrak{b}_U \, | \, B \subset V \implies B \in \mathfrak{b}_V \}.$$

Note that (1) is just a special case of (4). Also, combining (2), (3) and (4) yields the following refinement operation on \mathcal{B} . If δ is any finite collection of open subsets of U (not necessarily covering U), we have

(5)
$$\mathcal{B}(U) \longrightarrow \mathcal{B}(U) : \mathfrak{b} \longmapsto \mathfrak{b}_{\delta} = \{ B \in \mathfrak{b} \mid V \subset \cup \delta \implies \exists D \in \delta, V \subset D \}.$$

Definition 2.1. \mathcal{B} is called *good* if $\mathcal{B}(X) \neq \emptyset$ and \mathcal{B} has the operations (1),..., (5).

We will now show that there exists a good \mathcal{B} .

Proposition 2.2. (1) If \mathcal{B} with $\mathcal{B}(X) \neq \emptyset$ has (2), (3) and (4), then it is good.

(2) Let \mathfrak{b} be any basis of affine opens of X. There exists a smallest good \mathcal{B} with $\mathfrak{b} \in \mathcal{B}(X)$. This \mathcal{B} is given by

$$\mathcal{B}(U) = \{ (\mathfrak{b}|_U)_{\delta_1, \dots, \delta_n} \mid \delta_i \subset \operatorname{open}(U), \ |\delta_i| < \infty \}.$$

Proof. (1) follows from the discussion above. For (2), first note that \mathcal{B} is obviously contained in any good \mathcal{B}' . If $V \subset U$ and δ is a collection in U, we put $\delta|_V = \{D \cap V \mid D \in \delta\}$. For any basis \mathfrak{b}' of U, we have $(\mathfrak{b}'_{\delta})|_V = (\mathfrak{b}'|_V)_{(\delta|_V)}$, so (2) holds. For (4), note that $(\mathfrak{b}|_U)_{\delta_1,\ldots,\delta_n} \circ (\mathfrak{b}|_V)_{\varepsilon_1,\ldots,\varepsilon_m} = (B|_U)_{\delta_1,\ldots,\delta_n,\varepsilon_1,\ldots,\varepsilon_m}$. Finally for (3), if $(\mathfrak{b}|_U)_{\delta_1,\ldots,\delta_n}$ and $(\mathfrak{b}|_V)_{\varepsilon_1,\ldots,\varepsilon_m}$ coincide on $U \cap V$, then their union equals $(\mathfrak{b}|_{U\cup V})_{\delta_1,\ldots,\delta_n,\varepsilon_1,\ldots,\varepsilon_m}, \{U,V\}$.

3. Sheaves of Hochschild complexes

3.1. The presheaf $C_{\mathcal{B}}$ for a good \mathcal{B} . From now on, \mathcal{B} is a good presheaf of bases, and we consider the presheaf $C_{\mathcal{B}}$ of colimit Hochschild complexes as defined in §2.3.

Proposition 3.1. (1) $C_{\mathcal{B}}$ is flabby.

(2) $C_{\mathcal{B}}$ satisfies the sheaf condition with respect to finite coverings.

Proof. (2) By induction, we may consider $U = U_1 \cup U_2$ and the given elements $\varphi_i \in \mathbf{C}_{\mathcal{B}}^p(U_i)$ such that $\varphi_1|_{U_{12}} = \varphi_2|_{U_{12}}$, where $U_{12} = U_1 \cap U_2$. Let φ_i be a representing element in $\mathbf{C}^p(\mathfrak{b}_i)$ for a basis $\mathfrak{b}_i \in \mathcal{B}(U_i)$ and let $\mathfrak{b}' \subset \mathfrak{b}_1|_{U_{12}} \cap \mathfrak{b}_2|_{U_{12}}$ be a basis in $\mathcal{B}(U_{12})$ for which $\varphi_1|_{U_{12}}$ and $\varphi_2|_{U_{12}}$ coincide in $\mathbf{C}^p(\mathfrak{b}')$. Put $\mathfrak{b}'_i = \mathfrak{b}_i \circ \mathfrak{b}' \in \mathcal{B}(U_i)$ (using (4)) and put $\mathfrak{b} = \mathfrak{b}'_1 \cup \mathfrak{b}'_2 \in \mathcal{B}(U \cup V)$ (using (3)). We can now easily give an element $\varphi \in \mathbf{C}^p(\mathfrak{b})$, which represents a glueing of φ_1 and φ_2 on U, by specifying its

value for $V_0 \subset \cdots \subset V_p$: if $V_p \in \mathfrak{b}'_i$, we use the element specified by φ_i . This is well defined since $V_p \in \mathfrak{b}'_1 \cap \mathfrak{b}'_2$ implies $V_p \in \mathfrak{b}'$. It is a glueing of the φ_i since φ and φ_i coincide on $\mathfrak{b}'_i \subset \mathfrak{b}_i$.

Now suppose we have an element $\varphi \in \mathbf{C}^p(\mathfrak{b}')$ for $\mathfrak{b}' \in \mathcal{B}(U)$ and suppose we have bases $\mathfrak{b}_i \subset \mathfrak{b}'|_{U_i}$ for which $\varphi|_{U_i}$ becomes zero in $\mathbf{C}^p(\mathfrak{b}_i)$. If we put $\mathfrak{b}'_i = \mathfrak{b}_i \circ (\mathfrak{b}_1|_{U_12} \cap \mathfrak{b}_2|_{U_{12}})$ and $\mathfrak{b} = \mathfrak{b}'_1 \cup \mathfrak{b}'_2$, then φ becomes zero in $\mathbf{C}^p(\mathfrak{b}')$.

(1) Consider the restriction map $\mathbf{C}^p(U) \longrightarrow \mathbf{C}^p(V)$ for $V \subset U$. If $\varphi \in \mathbf{C}^p(\mathfrak{b})$ is a representing element in the codomain, we can lift it to $\bar{\varphi} \in \mathbf{C}^p(\mathfrak{b}' \circ \mathfrak{b})$, where $\mathfrak{b}' \in \mathcal{B}(U)$ is arbitrary and the value of $\bar{\varphi}$ for $V_0 \subset \cdots \subset V_p$ is the value specified by φ if $V_p \subset V$ and is zero otherwise.

3.2. The sheaf C_{qc} of colimit Hochschild complexes. Let $qc(X) \subset open(X)$ be the subposet of quasi-compact opens with the induced Grothendieck topology. We immediately get:

Proposition 3.2. The restriction \mathbf{C}_{qc} of $\mathbf{C}_{\mathcal{B}}$ to qc(X) is a sheaf.

Proof. Since every covering of a quasi-compact $U \subset X$ has a finite subcovering, it suffices to check the sheaf condition on finite coverings, which is done in Proposition 3.1.

3.3. The sheaf $\mathbf{C} = \mathbf{C}_{\mathcal{B}}$. Let $\Pr(X)$ and $\operatorname{Sh}(X)$ (resp. $\Pr_{\operatorname{qc}}(X)$ and $\operatorname{Sh}_{\operatorname{qc}}(X)$) be the categories of presheaves and sheaves on X (resp. on $\operatorname{qc}(X)$). Since $\operatorname{qc}(X)$ is a basis of X, by the (proof of the) Lemme de Comparaison [1], there is a commutative square

$$\begin{array}{c} \Pr(X) \xrightarrow{(-)_{qc}} \Pr_{qc}(X) \\ a \downarrow \qquad \qquad \downarrow a' \\ \operatorname{Sh}(X) \xrightarrow{(-)_{qc}} \operatorname{Sh}_{qc}(X) \end{array}$$

in which the vertical arrows are sheafifications, the horizontal arrows are restrictions to qc(X), and the lower horizontal arrow is an equivalence. Let $\mathbf{C} = a\mathbf{C}_{\mathcal{B}}$ be the sheafification of $\mathbf{C}_{\mathcal{B}}$.

Proposition 3.3. If $U \subset X$ is a quasi-compact open, then

$$\mathbf{C}_{\mathcal{B}}(U) \longrightarrow \mathbf{C}(U)$$

is an isomorphism. In particular, there is a quasi-isomorphism

$$\mathbf{C}(U, \mathcal{O}_U) \cong \mathbf{C}(U).$$

Proof. By Proposition 3.2 we have $(\mathbf{C}_{\mathcal{B}})_{qc} \cong a'(\mathbf{C}_{\mathcal{B}})_{qc} \cong (a\mathbf{C}_{\mathcal{B}})_{qc}$.

Proposition 3.4. \mathbf{C}^p is acyclic for taking quasi-compact sections; i.e. for $U \subset X$ a quasi-compact open and i > 0, we have $H^i(U, \mathbf{C}^p) = 0$.

Proof. By Propositions 3.1(1) and 3.3, the restriction maps $\mathbf{C}^p(X) \longrightarrow \mathbf{C}^p(U)$ are surjective for U quasi-compact. The rest of the proof is along the lines of the classical proof that flabby sheaves are acyclic for taking global sections.

WENDY LOWEN

4. Local to global spectral sequence

In this section, X is a quasi-compact scheme and C is the sheaf of complexes of §3.3. In particular, there are quasi-isomorphisms $\mathbf{C}(U, \mathcal{O}_U) \cong \mathbf{C}(U)$ for U quasicompact open. We obtain a local to global spectral sequence for Hochschild cohomology:

Theorem 4.1. There is a local to global spectral sequence

$$E_2^{p,q} = H^p(X, \mathbf{H}^q \mathbf{C}) \Rightarrow H^{p+q} \mathbf{C}(X).$$

Proof. Since, by Proposition 3.4, **C** is a bounded below complex of acyclic objects for Γ , **C** is itself acyclic, i.e. $R\Gamma(X, \mathbf{C}) = \mathbf{C}(X)$. So the above is just the hypercohomology spectral sequence [4, 2.4.2] for the complex of sheaves **C**.

References

- Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Springer-Verlag, Berlin, 1972, Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics, Vol. 269. MR0354652 (50:7130)
- M. Gerstenhaber and S. D. Schack, The cohomology of presheaves of algebras. I. Presheaves over a partially ordered set, Trans. Amer. Math. Soc. **310** (1988), no. 1, 135–165. MR965749 (89k:16052)
- E. Getzler and J. D. S. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, preprint hep-th/9403055.
- A. Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. J. (2) 9 (1957), 119–221. MR0102537 (21:1328)
- V. Hinich, Deformations of sheaves of algebras, Adv. Math. 195 (2005), no. 1, 102–164. MR2145794 (2007d:13021)
- B. Keller, Derived invariance of higher structures on the Hochschild complex, preprint, http://www.math.jussieu.fr/~keller/publ/dih.pdf.
- M. Kontsevich, Deformation quantization of algebraic varieties, Lett. Math. Phys. 56 (2001), no. 3, 271–294, EuroConférence Moshé Flato 2000, Part III (Dijon). MR1855264 (2002j:53117)
- 8. ____, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157–216. MR2062626
- W. Lowen, Algebroid prestacks and deformations of ringed spaces, Trans. Amer. Math. Soc. 360 (2008), 1631–1660.
- 10. W. Lowen and M. Van den Bergh, A local to global spectral sequence for Hochschild cohomology, in preparation.
- <u>—</u>, Hochschild cohomology of abelian categories and ringed spaces, Advances in Math. 198 (2005), no. 1, 172–221. MR2183254 (2007d:18017)
- 12. _____, Deformation theory of abelian categories, Trans. Amer. Math. Soc. **358** (2006), no. 12, 5441–5483. MR2238922
- B. Mitchell, *Rings with several objects*, Advances in Math. 8 (1972), 1–161. MR0294454 (45:3524)
- R. G. Swan, Hochschild cohomology of quasiprojective schemes, J. Pure Appl. Algebra 110 (1996), no. 1, 57–80. MR1390671 (97j:19003)
- M. Van den Bergh, On global deformation quantization in the algebraic case, J. Algebra 315 (2007), no. 1, 326–395. MR2344349
- A. Yekutieli, Deformation quantization in algebraic geometry, Advances in Math. 198 (2005), no. 1, 383–432. MR2183259 (2006j:53131)

Departement DWIS, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium E-mail address: wlowen@vub.ac.be